# A tibble: 4 × 5
  Name                     sex     age height weight
  <chr>                    <chr> <dbl>  <dbl>  <dbl>
1 A Dijiang                M        24    180     80
2 A Lamusi                 M        23    170     60
3 Christine Jacoba Aaftink F        21    185     82
4 Per Knut Aaland          M        31    188     75Today’s data
- Choose the cell for the resulting output. You can use the mouse to select the cell or use the arrow key to navigate.
- Type “=” in the cell. The equal sign will appear in the cell and formula bar.
- Type the address of the cell that we want to use for our calculation. In our case, it is E2 (weight/KG).
- Add divide sign “/”
- To convert height from centimeters to a meter, we will divide the D2 by 100.
- Take the squared “^2” of the height and press Enter.
knitr::include_graphics("Adding_Excel_formula.gif")
df |> 
  mutate(bmi = weight /(height/100)^2)# A tibble: 4 × 6
  Name                     sex     age height weight   bmi
  <chr>                    <chr> <dbl>  <dbl>  <dbl> <dbl>
1 A Dijiang                M        24    180     80  24.7
2 A Lamusi                 M        23    170     60  20.8
3 Christine Jacoba Aaftink F        21    185     82  24.0
4 Per Knut Aaland          M        31    188     75  21.2SELECT *, weight /POWER((height/100),2) AS bmi FROM df;| Name | sex | age | height | weight | bmi | 
|---|---|---|---|---|---|
| A Dijiang | M | 24 | 180 | 80 | 24.69136 | 
| A Lamusi | M | 23 | 170 | 60 | 20.76125 | 
| Christine Jacoba Aaftink | F | 21 | 185 | 82 | 23.95909 | 
| Per Knut Aaland | M | 31 | 188 | 75 | 21.22001 | 

1. SUM
The SUM() formula performs addition on selected cells. It works on cells containing numerical values and requires two or more cells.
In our case, we will be applying the SUM formula to a range of cells from C2 to C5 and storing the result on C6. It will add 24, 23, 21, and 31. You can also apply this formula to multiple columns.
=SUM(C2:C5)
(Total<-sum(df$age))[1] 99SELECT SUM(age) AS Total FROM df;| Total | 
|---|
| 99 | 
Total = SUM(compare[age])
MIN and MAX
The MIN() formula requires a range of cells, and it returns the minimum value. For example, we want to display the minimum weight among all athletes on the E6 cell. The MIN formula will search for the minimum value and show 60.
Concatenate


SELECT *, CONCAT(age,'',sex) AS age_sex FROM df;| Name | sex | age | height | weight | age_sex | 
|---|---|---|---|---|---|
| A Dijiang | M | 24 | 180 | 80 | 24.0M | 
| A Lamusi | M | 23 | 170 | 60 | 23.0M | 
| Christine Jacoba Aaftink | F | 21 | 185 | 82 | 21.0F | 
| Per Knut Aaland | M | 31 | 188 | 75 | 31.0M | 
df |> 
  mutate(age_sex = paste0(age,"",sex))# A tibble: 4 × 6
  Name                     sex     age height weight age_sex
  <chr>                    <chr> <dbl>  <dbl>  <dbl> <chr>  
1 A Dijiang                M        24    180     80 24M    
2 A Lamusi                 M        23    170     60 23M    
3 Christine Jacoba Aaftink F        21    185     82 21F    
4 Per Knut Aaland          M        31    188     75 31M    jOINING TABLES
df# A tibble: 4 × 5
  Name                     sex     age height weight
  <chr>                    <chr> <dbl>  <dbl>  <dbl>
1 A Dijiang                M        24    180     80
2 A Lamusi                 M        23    170     60
3 Christine Jacoba Aaftink F        21    185     82
4 Per Knut Aaland          M        31    188     75df2# A tibble: 5 × 2
  Name                     country     
  <chr>                    <chr>       
1 A Dijiang                China       
2 A Lamusi                 Ghana       
3 Christine Jacoba Aaftink Zimbabwe    
4 Per Knut Aaland          South Africa
5 Bongani                  USA         df |> 
  left_join(df2,by="Name")# A tibble: 4 × 6
  Name                     sex     age height weight country     
  <chr>                    <chr> <dbl>  <dbl>  <dbl> <chr>       
1 A Dijiang                M        24    180     80 China       
2 A Lamusi                 M        23    170     60 Ghana       
3 Christine Jacoba Aaftink F        21    185     82 Zimbabwe    
4 Per Knut Aaland          M        31    188     75 South AfricaSELECT d1.Name,d1.sex,d1.age,d1.height,d1.weight,d2.country 
FROM df AS d1
LEFT JOIN df2 AS d2
ON d1.Name = d2.Name;| Name | sex | age | height | weight | country | 
|---|---|---|---|---|---|
| A Dijiang | M | 24 | 180 | 80 | China | 
| A Lamusi | M | 23 | 170 | 60 | Ghana | 
| Christine Jacoba Aaftink | F | 21 | 185 | 82 | Zimbabwe | 
| Per Knut Aaland | M | 31 | 188 | 75 | South Africa | 




